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Abstract This study presents a new estimate of the oceanic anthropogenic CO2 (Cant) sink over the
industrial era (1780 to present), from assimilation of potential temperature, salinity, radiocarbon, and
CFC-11 observations in a global steady state ocean circulation inverse model (OCIM). This study differs from
previous data-based estimates of the oceanic Cant sink in that dynamical constraints on ocean circulation
are accounted for, and the ocean circulation is explicitly modeled, allowing the calculation of oceanic
Cant storage, air-sea fluxes, and transports in a consistent manner. The resulting uncertainty of the
OCIM-estimated Cant uptake, transport, and storage is significantly smaller than the comparable uncertainty
from purely data-based or model-based estimates. The OCIM-estimated oceanic Cant storage is 160–166 PgC
in 2012, and the oceanic Cant uptake rate averaged over the period 2000–2010 is 2.6 PgC yr−1 or about 30%
of current anthropogenic CO2 emissions. This result implies a residual (primarily terrestrial) Cant sink of about
1.6 PgC yr−1 for the same period. The Southern Ocean is the primary conduit for Cant entering the ocean,
taking up about 1.1 PgC yr−1 in 2012, which represents about 40% of the contemporary oceanic Cant uptake.
It is suggested that the most significant source of remaining uncertainty in the oceanic Cant sink is due to
potential variability in the ocean circulation over the industrial era.

1. Introduction

Human activities such as fossil fuel burning, cement production, and deforestation have driven large
amounts of CO2 into the atmosphere over the industrial era (∼1780 to present), with associated changes in
the Earth’s climate [Hegerl et al., 2007]. The ocean represents a significant sink of anthropogenic CO2 emis-
sions, having absorbed roughly 20–40% of CO2 emitted due to human activities over the industrial era [Ciais
et al., 2013]. Despite its importance in the global carbon cycle and in mitigating anthropogenic climate
change, significant uncertainties remain in quantifying the global oceanic anthropogenic CO2 sink [Wang
et al., 2012; Khatiwala et al., 2013]. These uncertainties stem from uncertainties and biases in data-based
methodologies for inferring oceanic anthropogenic CO2 storage and in dynamical ocean models used to
infer the air-sea fluxes and oceanic transport of anthropogenic CO2 (Cant).

Although some recent studies have been able to infer oceanic anthropogenic CO2 uptake by repeated direct
measurements of the in situ dissolved inorganic carbon (DIC) concentration [e.g.,Wanninkhof et al., 2010;
Bates et al., 2012], such measurements are too sparse to allow a global estimate of the oceanic Cant sink
and do not extend far back enough in time to allow historical estimates of the oceanic Cant sink. Given this
lack of direct observation of the oceanic Cant concentration, several indirect methods have been devised
for estimating anthropogenic CO2 storage at a global scale and over long time periods. The first global
estimate of oceanic Cant storage used the ΔC* method [Gruber et al., 1996; Sabine et al., 2004]. This and
other “back-calculation” methods (see review by Sabine and Tanhua [2010]) estimate Cant concentrations
by removing the preindustrial or “natural” dissolved inorganic carbon (DIC) component using a combina-
tion of water mass and age tracers. Unfortunately, these back-calculation schemes suffer from significant
errors and biases including assumptions of constant stoichiometric ratios, neglect of mixing when calculat-
ing water mass ages, and assumptions of constant air-sea disequilibrium [Gruber et al., 1996;Matsumoto and
Gruber, 2005]. More recently, other methods have been employed that do not depend on back calculation,
but instead rely on indirectly inferring oceanic Cant uptake from transient tracer observations.Waugh et al.
[2006] used chlorofluorocarbon (CFC) observations to constrain the ocean’s transit time distribution (TTD),
from which the oceanic uptake and storage of Cant was inferred. The uncertainties associated with the TTD
method are large due to limitations of the data used to constrain the TTD, the parameterized form of the
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TTD, and assumptions made about the air-sea disequilibrium [Waugh et al., 2006]. More recently, Khatiwala
et al. [2009] estimated the ocean’s TTD using a more general Green Function (GF) approach, allowing them
to derive a four-dimensional estimate of the oceanic anthropogenic CO2 sink over the industrial era. The
GF estimate was substantially improved over previous estimates by the use of multiple tracers to constrain
the TTD and by a more realistic treatment of air-sea gas exchange, but uncertainties associated with the
GF method are still large, due to the underconstrained nature of the GF inversion that must be regularized
using a maximum entropy approach [Khatiwala et al., 2009; Holzer et al., 2010]. To reduce these uncertain-
ties, Khatiwala et al. [2013] used results from a dynamical ocean model to help constrain some of the GF
parameters; this practice, however, may introduce other model-dependent errors.

A significant disadvantage of all of the above methods is that they do not provide information about the
air-sea fluxes or internal oceanic transport of anthropogenic CO2 over time (although the GF approach does
give aggregated air-sea fluxes over large regions over time [Khatiwala et al., 2013]). The air-sea exchange
and interior transport of anthropogenic carbon in the ocean have typically been estimated by assimilat-
ing data-based estimates of Cant storage into dynamical ocean general circulation models (OGCMs) [e.g.,
Mikaloff-Fletcher et al., 2006; Gerber and Joos, 2010; Gerber et al., 2009; Gruber et al., 2009]. This means that
the inferred transports and air-sea fluxes inherit both errors from the method used to determine oceanic
Cant concentrations and errors from the underlying OGCM. One study suggests that the two sources of
error are approximately equal in magnitude, causing up to 100% uncertainties in regional air-sea fluxes and
transports of anthropogenic CO2 [Gerber et al., 2009].

Given the uncertainties associated with both data-based and the model-based approaches to quantifying
the oceanic Cant sink, a promising approach is to assimilate the observations used to indirectly estimate
oceanic Cant concentrations directly into an ocean circulation model in order to constrain air-sea gas
exchange and ocean ventilation rates, and then use the resulting optimized model to estimate the oceanic
uptake, storage, and transport of Cant. Such an approach has been used previously to estimate ocean ven-
tilation rates and anthropogenic CO2 uptake. Some of the earliest estimates of oceanic anthropogenic CO2

uptake relied on box diffusion models that were constrained by radiocarbon (Δ14C) observations [e.g.,
Oeschger et al., 1975]. More recently, the Estimating the Circulation and Climate of the Ocean (ECCO) con-
sortium assimilated global temperature and salinity data into a three-dimensional OGCM, which was then
used to simulate the uptake and transport of anthropogenic CO2 by the ocean [Graven et al., 2012; Khatiwala
et al., 2013]. A major shortcoming of the ECCO model is that ventilation tracers such asΔ14C and chloroflu-
orocarbons (CFCs) were not assimilated. It has been shown that even models that reproduce temperature
and salinity distributions well may still have deficiencies in ventilation that can best be identified by simu-
lating Δ14C and CFCs [England and Maier-Reimer, 2001]. Gerber and Joos [2013] assimilated Δ14C and CFC-11
observations into a global coarse resolution ocean model using an ensemble Kalman filter approach, which
improved the representation of ocean ventilation and yielded more realistic oceanic anthropogenic CO2

uptake than in a model that only assimilated temperature and salinity observations. However, the coarse
resolution of that model, as well as the limited number of tunable parameters, resulted in large model-data
discrepancies and therefore potentially large model errors.

Here I report results from a new estimate of the oceanic anthropogenic CO2 sink that addresses many of
the issues raised above. In this study, an adjoint approach is used to bring a global ocean circulation inverse
model (OCIM) into consistency with global observations of potential temperature, salinity, radiocarbon
(Δ14C), and CFC-11. These tracers are assimilated into the OCIM to obtain optimal estimates of the clima-
tological mean (steady state) ocean circulation, ventilation, and air-sea gas exchange rates. The optimized
circulation and air-sea gas exchange rates from this model are then used to simulate the oceanic uptake of
Cant over the industrial era.

The main advantages of this study compared to previous work are threefold. First, in addition to assimilating
temperature and salinity, bothΔ14C and CFC-11 are assimilated, which provide strong constraints on ocean
ventilation rates and on Cant uptake [e.g., England and Maier-Reimer, 2001;Waugh et al., 2006; Graven et al.,
2012]. Second, the entire three-dimensional ocean circulation field is adjusted during the inversion pro-
cess to achieve optimal consistency with the observed tracer distributions. This results in a far better match
between modeled and observed tracer fields than achieved by previous models that assimilated Δ14C and
CFC-11 [e.g., Gerber and Joos, 2013]. Third, unlike previous studies that have assimilated data-based Cant esti-
mates into OGCMs to estimate air-sea fluxes and transport of anthropogenic CO2 [e.g.,Mikaloff-Fletcher et al.,
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2006; Gerber and Joos, 2010; Gerber et al., 2009; Gruber et al., 2009], this study produces three-dimensional
estimates of oceanic Cant uptake, storage, and transport that are internally consistent with the data used
to estimate both the Cant concentration and the underlying ocean circulation. This internal consistency
is shown to reduce the uncertainty of oceanic Cant uptake, storage, and transport compared to previous
studies. A significant caveat, however, is that any changes in the ocean Cant sink due to ocean circulation
variability are not captured by this approach, since a steady state ocean circulation is assumed.

The underlying model and data assimilation approach used here is most similar to that of Schlitzer [2007],
who also assimilated radiocarbon and CFC observations into a global ocean model to constrain deep ocean
ventilation rates. Among other differences, the model used in this study is of higher spatial resolution than
that of Schlitzer [2007] and includes improved parameterizations of subgridscale processes. A detailed
description of the ocean circulation inverse model used here is given in section 2. The OCIM is applied
to estimate the oceanic Cant sink over the industrial era in section 3. Section 4 discusses implications of
these findings for the terrestrial carbon sink, and section 5 summarizes the results and discusses remaining
uncertainties in the oceanic Cant sink.

2. Methods
2.1. Ocean Circulation Inverse Model
The ocean circulation model used in this study was introduced by DeVries and Primeau [2011] and has been
used extensively to study various aspects of the ocean’s circulation and biogeochemistry [DeVries et al.,
2012a, 2012b, 2013; Primeau et al., 2013;Waugh et al., 2013; Holzer and Primeau, 2013;Weber and Deutsch,
2012]. The basic theory andmethodology behind the model is described by DeVries and Primeau [2011]. This
section provides a brief description of the model and of how it is extended to estimate the oceanic Cant sink.

The underlying dynamical ocean model is based on a steady state linear momentum balance together with
the continuity equation, which when discretized on the model grid can be cast in terms of a matrix equation

!" + # = $, (1)

where " = [u v w h] is the dynamical model state including the horizontal and vertical velocity components
and the sea surface height, and! is a matrix operator that enforces mass continuity and balance among
the frictional, Coriolis, and barotropic pressure forces, and the forces in # which include the imposed surface
wind stress and baroclinic pressure forces. Previous versions of the OCIM parameterized frictional forces
with Laplacian viscosity terms, but here we use a simple linear (Rayleigh) drag ! = 10−6 s−1, which gives
nearly identical results. Equation (1) is discretized on an Arakawa B-grid with 2◦ horizontal resolution and
24 unevenly spaced vertical levels, ranging in thickness from 30 m at the surface to 500 m at depth. The
OCIM differs fundamentally from standard free-running OGCMs in that the baroclinic pressure forces are
not computed from internally simulated temperature and salinity but are diagnosed from climatological
observed density fields. With this linear formulation, equation (1) can be solved in under 1 s, after a suitable
factorization of the matrix!.

A “model error” term $ in equation (1) takes into account errors in the model state " that might result from
errors in the climatological density and wind stress fields (i.e., errors in # ), as well as errors resulting from the
discretization of the governing equations, the steady state assumption, and neglect of nonlinear terms in
the momentum balance. The components of $ corresponding to the mass-continuity equation are taken
to be identically zero, while the other components of $ are initially assumed to be zero and are iteratively
adjusted during the inversion process to achieve consistency with observed tracer fields (see section 2.2).
Examining the spatial distribution of the error terms for the umomentum and v momentum equations
reveals that the error terms are largest near boundaries and in particular those regions that experience
large eddy variability and fast ocean currents, for example, in the vicinity of western boundary currents
and Antarctic Circumpolar Current (ACC) regions (Figure 1). This spatial distribution of the error terms is
consistent with prior expectations. The boundary regions are areas of steep topography which are poorly
resolved by the coarse 2◦ model grid, while the western boundary current and ACC regions experience
high degrees of eddy variability and have fast-moving ocean currents. Thus, these are all regions in which
a steady state frictional-geostrophic balance may break down, necessitating adjustments to the initial
momentum balance.
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Figure 1. Model error terms averaged over the depth inter-
val 150–450 m for (a) the zonal momentum balance (eu)
and (b) the meridional momentum balance (ev ). Units are
10−6 m s−2.

The modeled velocity fields from the solution to
equation (1), along with parameterized diffusive
terms, are used to form a matrix transport operator , which is used to simulate tracers according to
the tracer conservation equation

d%∕dt +  % = &, (2)

where % is a generic tracer and & is a tracer
source-sink term. While the advective (velocity)
terms in  are optimized, the diffusive terms are
not. Previous versions of the model used con-
stant Laplacian horizontal and vertical diffusion,
but the version used here orients diffusion along
isopycnals [Redi, 1982]. The isopycnal diffusiv-
ity is parameterized according to Griffies et al.
[1998] using a uniform isopycnal diffusivity KI. A
uniform background vertical diffusivity KV is also
imposed, and vertical diffusivities in the surface
mixed layer are parameterized according to the
nonlocal K-Profile Parameterization scheme [Large
et al., 1994]. The depth of the surface mixed layer
is diagnosed from observations of winter mixed
layer depths [de Boyer Montégut et al., 2004]. The
sensitivity of the model to the values of KI and KV
is examined as discussed in section 2.3.

The tracers assimilated in this study include
potential temperature (Θ), salinity (S), natural or
“background” Δ14C, and CFC-11. Natural Δ14C

is a steady state approximation of the preindustrial Δ14C distribution [Key et al., 2004]. For all tracers, the
source-sink term can be cast in terms of an air-sea flux operating in the top model layer only

& = k
Δz1

("%atm − %) (3)

where %atm is the atmospheric tracer concentration, " is a solubility, k is a piston velocity, and Δz1 is the
depth of the first model layer. The source-sink term for Δ14C also includes first-order decay with a rate of
(8266 years)−1.

Potential temperature, salinity, andΔ14C are solved at equilibrium (d%∕dt = 0), and so transient atmospheric
histories of these tracers are not required. For these tracers " = 1 and k = Δz1(30 days)−1, and the cor-
responding “atmospheric” values are included as control parameters of the inverse model (see DeVries and
Primeau [2011] and section 2.2). The atmospheric history of CFC-11 [Bullister, 2011] is used to force a tran-
sient simulation of CFC-11 in the model, beginning in 1938 and ending in 2010, with a time step of 1 year.
For CFC-11, the piston velocity k is parameterized as a quadratic function of wind speed [e.g.,Wanninkhof,
1992; Sweeney et al., 2006]

k = # ⟨u10⟩2 (Sc∕660)−1∕2 (1 − fice) (4)

where u10 is the root-mean-square wind speed at 10 m above the sea surface, Sc is the
temperature-dependent Schmidt number, and fice is the climatological fractional ice cover. The wind speed
and ice cover climatologies are the same as those used in Phase 2 of the Ocean Carbon Cycle Model Inter-
comparison Project (OCMIP-2) [Najjar and Orr, 1998]. The coefficient # controls the wind speed dependence
of the piston velocity and is determined as part of the solution to the inverse model.

In addition to the four tracers simulated by the model, air-sea heat (QH) and freshwater (QF) fluxes are diag-
nosed from the model solution. This provides two additional constraints on the inverse model [see DeVries
and Primeau, 2011]. The model state ' of the combined dynamical model and tracer transport model thus
includes 10 state variables: ' = [u v w h Θ S Δ14C CFC-11(t) QH QF].
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2.2. Inversion Procedure
As described in detail by DeVries and Primeau [2011], the purpose of the inversion is to minimize an objective
function of the form

(()) = ('()) − 'obs)*Γ−1
yy ('()) − 'obs) + 1

$2
() − )0)*Γ−1

pp () − )0), (5)

where '()) is the model state vector and 'obs is a corresponding vector of observations; ) is the set of
adjustable “control” parameters of the model, and )0 is the corresponding prior expected value of the
parameters; Γyy is the covariance matrix for the observations, and Γpp is the covariance matrix for the con-
trol parameters; and $ is a hyperparameter that controls the relative strengths of the data constraints and
the parameter constraints. Using a quasi-Newton algorithm along with the adjoint method [see DeVries and
Primeau, 2011], the minimum of equation (5) typically is found in about 4000 iterations.

The formulation of the covariance matrices has been described in DeVries and Primeau [2011]. Here are
added additional terms to Γyy for CFC-11 observations, which have been taken from the Global Ocean
Data Analysis Project (GLODAP) [Key et al., 2004] and Carbon In The Atlantic Ocean (CARINA) [Carbon In The
Atlantic Ocean Group, 2009a, 2009b, 2010] data sets and binned to the model grid. Γyy for CFC-11 is formu-
lated as a matrix with nonzero terms on the diagonal elements. The magnitude of the diagonal elements
is equivalent to the variance of the observations on the model grid, which is determined by assuming an
error of 10% on each individual CFC-11 measurement, which is larger than the analytical error of CFC-11
measurements to take into account the effects of unresolved eddy variability [Haine and Gray, 2001]. To this
uncertainty, we also add the intra-annual variability of CFC-11 taken from a 1◦ monthly resolution run of the
National Center for Atmospheric Research Community Climate System Model [Danabasoglu et al., 2012] to
take into account the fact that intra-annual (seasonal) variability is not captured by the OCIM. Diagonal ele-
ments of Γyy corresponding to years and locations for which there are no CFC-11 measurements are set to a
very large number, in order not to affect the solution. Since many (∼80%) of the model grid points have no
CFC-11 observations, a weak smoothness constraint (Laplacian-squared term) is also applied which yields
nondiagonal elements of Γyy .

The control parameters of the inverse model ) include the model error terms eu and ev and the surface
restoring values for temperature, salinity, and Δ14C, as described by DeVries and Primeau [2011]. Here the
parameter # , which controls the wind speed dependence of the air-sea CFC-11 flux, is also added to ). The
prior expected value of # , #o is set to the OCMIP-2 value of 0.337 h cm−1 [Najjar and Orr, 1998], with a 30%
uncertainty which determines the diagonal elements of Γpp.

2.3. Control Inversion and Uncertainty Estimation
Prior to the inversion, the OCIM must be initialized with several fixed parameters which are not allowed to
vary during the inversion process. These parameters include the isopycnal diffusivity KI, the vertical diffu-
sivity KV , and the parameter $ in equation (5), which determines the trade-off between how well the model
fits the observations and how large the adjustments to the control parameters are allowed to be. Additional
sources of uncertainty include the prior value of the gas exchange coefficient, #o, used in the optimization,
and uncertainty in the tracer observations to which the model is fit. The “control” inversion (CTL) uses stan-
dard values for the isopycnal and diapycnal diffusivities of KI = 103 m2 s−1 and KV = 10−5 m2 s−1, respectively,
a value of #o = 0.337 for the gas exchange coefficient [Najjar and Orr, 1998], objectively mapped tem-
perature [Locarnini et al., 2010] and salinity [Antonov et al., 2010] fields from the 2009 World Ocean Atlas,
objectively mapped natural Δ14C values from GLODAP [Key et al., 2004], CFC-11 observations from the GLO-
DAP and CARINA databases, and a value of $ = 3, which was found to give a good fit to the observations
without allowing excessive adjustments to the initial geostrophic momentum balance.

The simulated tracer fields in the CTL model match the observations very well (Figure 2). The largest misfits
between modeled and observed tracer distributions are found in the near-surface and thermocline regions.
The primary cause of these misfits is most likely the lack of seasonal variability in the model. In order to
match the observed tracer distributions in the deeper ocean, the modeled tracer values in the surface mixed
layer and upper thermocline are likely closer to winter values than annual mean values, since most deep
water formation occurs during the winter. Indeed, near-surface temperatures in the OCIM are much lower
than annual mean observed temperatures in those regions where deep water formation occurs, such as the
Southern Ocean and North Atlantic. Regionally, the largest model-data misfits occur in the Southern Ocean.
In particular, near-surface salinities are higher than observed (annually averaged) salinities; bottom water
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Figure 2. Zonally averaged (top row) modeled and (bottom row) observed tracer distributions in the Atlantic Ocean. Modeled tracer fields from the CTL version
of the OCIM. CI: contour interval.

Δ14C values are higher than observed values, and modeled CFC-11 concentrations are lower than observed
in the surface mixed layer south of about 60◦S.

To estimate the uncertainty of the OCIM circulation, ventilation, and gas exchange rates, the parameters KI,
KV , $, #o, and the tracer observations were varied systematically within reasonable bounds in various differ-
ent configurations of the OCIM (Table 1). The value of $ was varied between $ = 2 (model $2) and $ = 4
(model $4) to reflect uncertainty in how much adjustment to the control parameters should be allowed
in order to allow the model to fit the observed tracer distributions. The isopycnal diffusivity KI was set to
600 m2 s−1 in model KI,600, which is the value used in the Modular Ocean Model version 4p1 (MOM4p1) as
implemented in recent earth system model simulations [Dunne et al., 2012]. In model KI,2000, the value of
KI was set to 2000 m2 s−1 to test the sensitivity of the model to an upper bound estimate of isopycnal dif-
fusivity. Finally, in model KV,1.5 the vertical diffusivity was increased by 50% to 1.5× 10−5 m2 s−1, which is
the value of KV used for the high-latitude oceans in MOM4p1 [Dunne et al., 2012]. The gas exchange coeffi-
cient #o was reduced by 80% from the value in the CTL model to #o = 0.27 cm h−1, consistent with recent
estimates based on bomb Δ14C budgets [Sweeney et al., 2006]. To account for uncertainty in the tracer
observations, three additional inversions were run in which noise of the same magnitude as the obser-
vational uncertainty was added to the observations (models P1, P2, and P3, Table 1). For the objectively
mapped observations (potential temperature, salinity, andΔ14C), spatially correlated noise was added to the
data following the procedure described in DeVries and Primeau [2011]. For CFC-11, only the raw data were
assimilated, and so spatially uncorrelated noise was added to the observations.

Table 2 summarizes the post-optimization performance of the 10 different OCIM configurations in terms of
their error statistics. The mean deviation (MD) represents the (volume-weighted) mean difference between

Table 1. The 10 Different Configurations of the OCIM Used in This Studya

KI KV #o
Model $ (m2 s−1) (m2 s−1) (h cm−1) Data

CTL 3 1000 10−5 0.337 Observed
$2 2 1000 10−5 0.337 Observed
$4 4 1000 10−5 0.337 Observed
KI,2000 3 2000 10−5 0.337 Observed
KI,600 3 600 10−5 0.337 Observed
KV,1.5 3 1000 1.5×10−5 0.337 Observed
#0.27 3 1000 10−5 0.27 Observed
P1 3 1000 10−5 0.337 Observed + noise
P2 3 1000 10−5 0.337 Observed + noise
P3 3 1000 10−5 0.337 Observed + noise

aSee text for details.
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Table 2. The Mean Deviation (MD), Root-Mean-Square Error (RMSE), and Relative Error (RE) of Tracer Fields and
Selected Model Parameters in Each of the Model Configurationsa

Temperature Salinity Δ14C CFC-11 eu ev #
Model (◦C) (psu) (‰) (pmol kg−1) (10−6 m s−2) (10−6 m s−2) (h cm−1)

MD −0.02 0.001 0.6 −0.02 −0.02 0.01 −0.02
CTL RMSE 0.37 0.069 6.5 0.24 0.49 0.53 0.08

RE 0.85 0.79 0.64 1.34 0.82 0.80 0.35

MD −0.03 0.001 0.8 −0.03 −0.02 0.01 −0.02
$2 RMSE 0.40 0.072 6.9 0.25 0.40 0.42 0.07

RE 0.91 0.83 0.68 1.41 0.98 0.93 0.45

MD −0.02 0.001 0.5 −0.02 −0.02 0.01 −0.02
$4 RMSE 0.35 0.067 6.4 0.23 0.57 0.62 0.08

RE 0.82 0.77 0.62 1.31 0.72 0.72 0.29

MD −0.03 0.002 1.2 −0.03 −0.02 0.01 −0.04
KI,2000 RMSE 0.37 0.071 7.7 0.25 0.50 0.55 0.10

RE 0.93 0.84 0.66 1.49 0.82 0.83 0.45

MD −0.02 0.001 0.4 −0.02 −0.02 0.01 −0.02
KI,600 RMSE 0.37 0.069 6.2 0.23 0.50 0.53 0.07

RE 0.82 0.78 0.64 1.29 0.84 0.81 0.33

MD −0.02 0.001 0.6 −0.02 −0.02 0.01 −0.02
KV,1.5 RMSE 0.37 0.069 6.6 0.24 0.49 0.53 0.08

RE 0.85 0.79 0.64 1.35 0.83 0.81 0.36

MD −0.02 0.001 0.6 −0.02 −0.02 0.01 −0.02
#0.27 RMSE 0.37 0.069 6.5 0.24 0.49 0.53 0.07

RE 0.85 0.78 0.64 1.34 0.82 0.80 0.35

MD −0.02 0.001 0.8 −0.02 −0.02 0.01 −0.02
P1 RMSE 0.46 0.082 7.8 0.28 0.51 0.54 0.08

RE 1.07 1.05 0.71 1.59 0.85 0.83 0.35

MD −0.02 0.001 0.7 −0.02 −0.02 0.01 −0.02
P2 RMSE 0.46 0.082 7.6 0.28 0.51 0.55 0.08

RE 1.07 1.03 0.70 1.59 0.85 0.83 0.36

MD −0.02 0.001 0.8 −0.02 −0.02 0.01 −0.02
P3 RMSE 0.46 0.082 7.5 0.28 0.51 0.54 0.08

RE 1.07 1.02 0.71 1.59 0.85 0.83 0.35

aThe RE is unitless. See text for details and Table 1 for model setup.

the model state and the observations; or in the case of the model parameters, the mean difference between
the optimal model parameters and their prior estimated values. The root-mean-square error (RMSE) rep-
resents the mean-squared error of the (volume-weighted) deviation between the model state and the
observations, or in the case of the model parameters the deviation between the optimal model parameters
and their prior estimated values. The relative error (RE) is the square root of the value of that part of the cost
function pertaining to each particular model state variable or control parameter.

The relative error of the tracer fields and the model parameters are generally less than 1 for all runs except
for those in which noise was added to the observations (models P1, P2, and P3), indicating that the
model-data residuals are within the prior expected error bounds. The exception is CFC-11, which has a rel-
ative error of between 1.29 and 1.49. This indicates that the 10% prior error that was chosen for CFC-11 is
likely too small to fully account for unresolved eddy variability in the model.

The fit between the model and the tracer observations varies substantially over all 10 different OCIM config-
urations. The best model-data fits are generally found in model$4, which is to be expected since that model
allows the largest adjustments to the control parameters. Of the models that use the standard value of
$ = 3, the model KI,600 performs best overall, with the lowest relative error for CFC-11. The KI,2000 model per-
forms worst with respect to all tracers, indicating that an isopycnal diffusivity of 2000 m2 s−1 is unrealistically
large. The misfit between model and observations increases substantially in the models in which noise
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(a)

(b)

Figure 3. (a) Atmospheric pCO2 over the industrial era (1780 to
present) along with the oceanic anthropogenic CO2 (Cant) stor-
age rate (light red shading indicates range of model results).
Atmospheric pCO2 is derived from ice core measurements made
at Law Dome, Antarctica, for 1780–1958 (available at http://cdiac.
ornl.gov/ftp/trends/co2/lawdome.smoothed.yr75) and atmo-
spheric measurements made at Mauna Loa observatory from
1958 to present (available at ftp://ftp.cmdl.noaa.gov/ccg/co2/
trends/co2_annmean_mlo.txt). (b) Cumulative Cant storage by the
ocean over the industrial era from the ocean circulation inverse
model (OCIM, this study, red line plus shading), compared to
estimates from the ΔC* method [Sabine et al., 2004], the TTD
method [Waugh et al., 2006], the GF method [Khatiwala et al., 2009],
and a compilation of data- and model-based estimates [Khatiwala
et al., 2013].

was added to the observations (models
P1, P2, and P3). This indicates that the
observational fields used in those mod-
els are less probable than the standard
observational fields used in the other
models. This also implies that the model
circulation, ventilation, and gas exchange
rates in those models are less likely to
be correct than those in the models with
unperturbed observations.

3. The Oceanic Anthropogenic
CO2 Sink in theOCIM

Anthropogenic CO2 is simulated using the
optimized circulation field and air-sea gas
exchange parameter # from each of the
10 different configurations of the OCIM.
The amount of anthropogenic CO2 in
the ocean is estimated as the difference
between a time-varying run in which atmo-
spheric pCO2 increases according to the
observed atmospheric history from 1780
to 2012 (Figure 3a), and an initial condition
in which the oceanic DIC concentration is
in equilibrium with an atmospheric pCO2

of 280 ppm.

It is assumed that biological processes in
the ocean are not affected by the rising
atmospheric CO2 concentration so that
biological sources and sinks of DIC can be
neglected. In this case, sources and sinks
of CO2 are driven only by gas exchange,
as parameterized by equations (3) and (4)
with % the concentration of dissolved CO2

gas in seawater. The solubility of CO2 in
seawater depends on the sea surface tem-
perature and salinity, which is assumed to

be constant over the industrial period. The speciation of DIC into carbonate species and dissolved CO2

also depends on the seawater alkalinity, which is similarly taken to be a constant salinity-normalized value
over the industrial period. Therefore, any changes in CO2 uptake over the industrial era that have been
driven by changes in seawater temperature, salinity, or alkalinity (i.e., changes in the solubility pump) are
not accounted for in this calculation. Model simulations have shown that changes in the solubility pump
have only a very small effect on the oceanic uptake of anthropogenic CO2 [Wang et al., 2012], justifying their
neglect here.

3.1. Global Ocean Storage of Anthropogenic CO2

Results from the OCIM show that the oceanic storage rate of Cant (obtained by centered differences of the
oceanic Cant storage) increases along with atmospheric pCO2 throughout the industrial era (Figure 3a). The
increase in oceanic Cant storage rate is not monotonic, due to fluctuations in the atmospheric pCO2 growth
rate. Note that interannual variability due to variability in ocean circulation, which is ∼0.2–0.4 PgC yr−1

[Wanninkhof et al., 2013], is not represented in the OCIM-estimated Cant storage rates. Averaged over the
period 2000–2010, the oceanic Cant storage rate is about 2.6 PgC yr−1, while carbon emissions from fossil fuel
burning, cement production, and gas flaring averaged to 8.1 PgC yr−1 over the same period [Boden et al.,
2013]. The contemporary oceanic Cant sink thus represents about 30% of current fossil fuel CO2 emissions.
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Cumulative oceanic Cant storage in 2012 ranges from 160 to 166 PgC over the 10 different OCIM config-
urations, with a mean Cant storage of 164 PgC (Figure 3b). The estimate from the OCIM is larger than the
corresponding estimates from the ΔC* and TTD estimates for 1994, the nominal year to which those esti-
mates apply (Figure 3b). A portion of this discrepancy can be attributed to the additional areas covered
by the OCIM estimate, including the Arctic Ocean and Mediterranean Sea, which together stored about
4 PgC in 1994. The OCIM Cant estimate is within the uncertainty of the Cant estimates from the GF approach
[Khatiwala et al., 2009], which also did not include the Arctic Ocean and Mediterranean Sea. Khatiwala
et al. [2013] used a compilation of data- and model-based estimates to derive a “best guess” estimate of
155±35 PgC of oceanic Cant storage for the year 2010. The OCIM estimate of 155–160 PgC for 2010 lies very
close to the mean of this estimate. Cant storage by the ocean in 2010 amounted to approximately 42–44% of
the cumulative fossil fuel carbon emissions over the industrial era of ∼365 PgC [Boden et al., 2013].

The uncertainty on the OCIM Cant storage estimates for the global ocean is quite small (∼3 PgC or 2% of the
global Cant inventory in 2012), despite significant differences among the 10 different versions of the OCIM
in terms of the underlying model parameters (see Table 1). There are several reasons for this. In the OCIM,
the application of tracer constraints on the ocean circulation greatly reduces the sensitivity of the circulation
and ventilation rates (and associated Cant uptake) to the values of the isopycnal and vertical diffusivities. This
is because in the OCIM, the momentum balance can be adjusted locally to overcome deficiencies in the sub-
gridscale diffusivity parameterization that might cause discrepancies between the modeled and observed
tracer fields. This contrasts with OGCMs that are not constrained by observations, which show a strong sen-
sitivity of Cant uptake to variations in diffusivities [e.g.,Mikaloff-Fletcher et al., 2006]. Similarly, uncertainty in
the observations translates to only small uncertainty in the OCIM-estimated Cant sink due to prior constraints
placed on the magnitude of the model error terms, such that the adjustments to the momentum balance
have to occur within reasonable bounds [DeVries and Primeau, 2011]. This effectively penalizes “unrealistic”
observations. Thus, the combination of dynamical and observational constraints on the circulation of the
OCIM reduces the uncertainty on Cant uptake compared to estimates that apply primarily observational con-
straints [e.g., Sabine et al., 2004;Waugh et al., 2006; Khatiwala et al., 2009] or OGCM-based estimates that
apply primarily dynamical ocean circulation constraints [e.g.,Mikaloff-Fletcher et al., 2006].

The Cant uptake is relatively insensitive to the value of the initial air-sea gas exchange rate #o used in the
OCIM. In the CTL run, with #o = 0.337, the oceanic Cant storage in 2012 is 165 PgC, while in the #0.27 run, the
oceanic Cant storage in 2012 is 161 PgC. This is partly due to the fact that the optimal value of # is adjusted at
each surface grid point to achieve consistency with the observed CFC-11 concentration, but more so to the
fact that surface-to-deep ocean ventilation rates, and not air-sea gas exchange rates, are the rate-limiting
step in oceanic CO2 uptake [Sarmiento et al., 1992; Graven et al., 2012]. The models that use a value of
#o = 0.337 converge to a slightly lower global mean value of about # = 0.31. Almost all adjustment occurs
in the Southern Ocean south of 40◦S, where the mean value of # = 0.24. However, it appears that the actual
value of # is not that well constrained by the CFC-11 observations, as the value of # in the Southern Ocean in
model #0.27 is even lower at # = 0.18. Information from additional tracers, such as bomb-produced Δ14C, is
needed to better constrain the magnitude and spatial variability in # .

Although the uncertainty on globally integrated Cant storage in the OCIM is small, the uncertainty on Cant

concentrations at smaller spatial scales can be substantial. At the grid scale, the global average uncertainty
on Cant concentrations in 2012 is ±2.9 μmol kg−1, taking the full range of model results as a measure of
uncertainty. Maximum differences in oceanic Cant concentrations between the 10 different versions of the
OCIM can exceed 30 μmol kg−1 at the grid scale. However, these errors largely cancel out upon integrating
over large areas.

Several potentially important sources of uncertainty are not accounted for in these calculations. These
include potential biases in the model due to structural errors in the model circulation, for example due to
unresolved seasonality or to unresolved subgridscale flows. The assimilation of tracer data reduces these
structural errors to a minimum relative to other models of similar resolution, but some biases may still
remain as evidenced for example by model-data misfits in the Southern Ocean (Figure 2). Other potentially
important sources of error include biases due to the assumptions of steady state ocean circulation and biol-
ogy. All of these potential structural biases and assumptions are also inherent in previous approaches to
resolve the temporal variability in global ocean CO2 storage from observations [e.g., Khatiwala et al., 2009],
and so the uncertainties reported here are directly comparable to uncertainties reported in those studies.
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Figure 4. Depth-integrated oceanic Cant storage for the reference year 1994 for three different data-based estimates
using the ΔC* method [Sabine et al., 2004], the TTD method [Waugh et al., 2006], and the OCIM (this study). No correc-
tions to the ΔC* or TTD results have been applied. (In the original studies, negative values were removed from the ΔC*
Cant estimates [Sabine et al., 2004], and the TTD Cant concentrations were reduced by 20% uniformly [Waugh et al., 2006].)
Contour interval is 10 mol m−2.

Perhaps the largest source of “unestimated” error in the OCIM Cant calculations results from the assump-
tion of a constant ocean circulation over the industrial era. Analysis of repeated CFC observations in the
Southern Ocean have shown substantial changes in the circulation and ventilation in that region over
the last several decades, with potentially important implications for the oceanic CO2 sink [Waugh et al.,
2013]. Simulations of CO2 uptake in OGCMs driven with time-varying surface forcing generally show a sub-
stantial slowdown in the rate of increase in oceanic CO2 uptake since the 1990s [Sarmiento et al., 2010;
Wanninkhof et al., 2013], which has been attributed primarily to increased outgassing of “natural” CO2

(stored since preindustrial times) from the Southern Ocean [Lovenduski et al., 2008]. A rough estimate
of the magnitude of this effect can be obtained by comparing the pre- and post-1990 CO2 sinks in the
OCIM with those in OGCMs with time-varying forcing. Sarmiento et al. [2010] found a net oceanic CO2 sink
of 1.46±0.27 PgC yr−1 from 1960 to 1988, consistent with the OCIM estimate of 1.47±0.02 PgC yr−1 for
the same time period. However, from 1989 to the mid-2000s, Sarmiento et al. [2010] found a net oceanic
CO2 sink of 1.97±0.25 PgC yr−1 (0.51 PgC yr−1 larger than for 1960–1988), while the OCIM CO2 sink is
2.29±0.02 PgC yr−1 for the period 1989–2005 (0.82 PgC yr−1 larger than for 1960–1988). This could indicate
that the OCIM Cant uptake post-1989 is about 0.31 PgC yr−1 (0.82 − 0.51) too high (in other words, it does
not account for an additional 0.31 PgC yr−1 efflux of natural CO2 from the ocean to the atmosphere). If net
oceanic CO2 uptake were decreased by 0.31 PgC yr−1 after 1989, it would translate to a reduction in oceanic
CO2 storage of about 7 PgC in the year 2012 or slightly less than 5% of the global oceanic Cant inventory.

3.2. Regional Storage, Air-Sea Fluxes, and Transports of Anthropogenic CO2

The regional distribution of Cant storage in the ocean estimated from the OCIM differs substantially from
previous data-based estimates. Figures 4 and 5 compare Cant estimates from the OCIM with estimates from
the ΔC* and TTD methods for the reference year 1994. Cant storage estimates from the GF method are not
shown, as those estimates are not publicly available; however, comparisons can be made over some broad
regions tabulated inWang et al. [2012, Table 2] and with the depth-integrated Cant storage for 2008 shown
in Khatiwala et al. [2009, Figure 1a].

The highest concentrations of Cant in all the data-based estimates occur in the North Atlantic. The OCIM esti-
mate shows that Cant storage is concentrated along the pathway of the deep western boundary current in
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Figure 5. Zonally integrated sections of oceanic Cant storage for the reference year 1994 for (left column) the Atlantic
Ocean, (middle column) the Pacific Ocean, and (right column) the Indian Ocean using (top row) the ΔC* method [Sabine
et al., 2004], (middle row) the TTD method [Waugh et al., 2006], and (bottom row) the OCIM (this study). Contour interval
is 5 μmol kg−1.

the North Atlantic. The distribution of Cant in the North Atlantic inferred by the ΔC* and TTD estimates are
more diffuse in the east-west direction, with stronger north-south gradients (Figure 4). When compared
with the GF estimate [Khatiwala et al., 2009, Figure 1a], the OCIM estimate shows much higher Cant con-
centrations in the western North Atlantic south of about 45◦S, associated with a better representation of
the western boundary currents. The depth distribution of Cant in the OCIM better resembles the TTD-based
rather than the ΔC*-based Cant estimates, with greater accumulation of Cant in the deep ocean and lesser
Cant accumulation at shallow depths (Figure 5). This is in agreement withMatsumoto and Gruber [2005], who
found that theΔC* method overpredicts Cant concentrations in the thermocline but underpredicts Cant con-
centrations at depth. The total storage in the North Atlantic (between the equator and 60◦N) is similar in all
four data-based estimates: 22 PgC in the ΔC* and GF estimates and 25 PgC in the TTD and OCIM estimates.

Substantial differences among the data-based Cant estimates also occur in the Southern Ocean (south of
35◦S). The OCIM estimate is in much better agreement with the ΔC* estimate, both in terms of pattern and
magnitude, than the TTD estimate (Figure 4). The TTD Cant storage is too high in the Southern Ocean, partly
due to the incorrect assumption of constant air-sea CO2 disequilibrium in this method [Waugh et al., 2006].
The OCIM estimate yields 30 PgC Cant stored in the Southern Ocean, similar to the 27 PgC estimated by the
ΔC* method, but much smaller than the 50 PgC estimated by the TTD method and also smaller than the 36
PgC estimated by the GF method [Khatiwala et al., 2009;Wang et al., 2012]. In terms of the Cant depth distri-
bution, the OCIM shows less Cant storage in the upper ocean south of 60◦S than the ΔC* and TTD methods
(Figure 5). This is in spite of strong Cant uptake in this region, indicating strong northward Cant transport
(see below).

The third most important region for oceanic Cant storage is the North Pacific (Figures 4 and 5). Here the OCIM
Cant storage estimate of 19 PgC is in better agreement with the estimate from the TTD method (20 PgC) and
the GF method (18 PgC) [Wang et al., 2012] than the ΔC* estimate (14 PgC). Both the OCIM and TTD esti-
mates show preferential Cant storage in the western North Pacific, presumably associated with North Pacific
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(c)

(b)

(a)

Figure 6. Zonally integrated (a) air-sea anthropogenic CO2 flux,
(b) anthropogenic CO2 storage rate, and (c) northward anthro-
pogenic CO2 transport from the OCIM in the Atlantic (dashed
red curves), Indo-Pacific (dot-dashed blue curves), and global
oceans (solid black curves) for the year 2012. Shading repre-
sents the 1% uncertainty envelope from the ensemble of OCIM
runs. Also shown in Figures 6a–6c are corresponding estimates
derived from assimilating data-based anthropogenic CO2 esti-
mates into OGCMs [Mikaloff-Fletcher et al., 2006; Gerber et al.,
2009] (OIP and EnKF) and from the GF approach of Khatiwala
et al. [2013] (GF-ECCO). Red symbols correspond to estimates
for the Atlantic Ocean, and blue symbols to estimates for the
Indo-Pacific Oceans (for EnKF and GF-ECCO estimates only). For
the EnKF estimates [Gerber et al., 2009], ΔC*-based estimates are
shown as open circles, and TTD-based estimates are shown as
closed circles. All estimates are scaled to the year 2012.

Intermediate Water formation, which is not
resolved to as great a degree in the ΔC* esti-
mate. Preferential Cant storage in the western
North Pacific is also not captured by the GF
method to the degree that it is in the OCIM [c.f.
Khatiwala et al., 2009, Figure 1a].

Accounting for dynamical ocean circulation
constraints in the inversion generates a phys-
ically more realistic pattern of oceanic Cant

storage. This can be seen for example in the
concentration of Cant along the deep west-
ern boundary current in the North Atlantic
of the OCIM (Figure 4) and in the resolution
of significant zonal and meridional gradients
in Cant storage in the subtropical and tropical
oceans, associated with upwelling along east-
ern boundaries and near the equator (Figures 4
and 5). Uncertainties in the vertically integrated
Cant storage in 1994 average about 3 mol m−2,
with largest uncertainties (>5 mol m−2) in the
Southern Ocean-Drake Passage region and the
western North Atlantic.

The OCIM-estimated air-sea fluxes, storage
rates, and transport rates can be compared
with results from previous inverse modeling
studies by scaling the previous estimates to the
year 2012 (Figure 6). This was done by assum-
ing that the proportional change in Cant air-sea
fluxes (or storage rates or transport rates)
between the year in which the estimate is pro-
vided and the year 2012 is equivalent in both
the OCIM and the previous estimates. These
previous estimates include the Ocean Inver-
sion Project (OIP), in which air-sea fluxes in a
suite of 10 OGCMs were adjusted to achieve
an optimal fit to ΔC*-based Cant estimates
[Mikaloff-Fletcher et al., 2006, Table 2 and Figure
5], an ensemble Kalman filter (EnKF) approach
in which ΔC*- and TTD-based Cant estimates (as
well as Cant estimates from several other less
accurate methods not considered here) were
assimilated into a coarse-resolution OGCM,
again by adjusting air-sea fluxes [Gerber et al.,

2009, Tables 2 and 4], and a study in which the GF approach, along with transport information from the
ECCO OGCM, was used to derive air-sea fluxes and depth-integrated storage rates for 26 large ocean patches
[Khatiwala et al., 2013, Figure 6].

The air-sea flux of Cant in the OCIM shows a strong peak in the Southern Ocean, consistent with previous
estimates (Figure 6a). In this region, Cant uptake is high due to strong winds and high CO2 solubilities and
due to continual upwelling of old, Cant-poor waters. Cant uptake is also strong in the northern high latitudes,
where it peaks at about 40◦N, and in the tropics at about 20◦N and S. Interestingly, there is net outgassing
of Cant at the equator in the Atlantic Ocean, due to the accumulation of Cant in surface waters there (see
Figure 5). The uncertainties on air-sea fluxes in the OCIM are reduced compared to the OIP and EnKF esti-
mates [Mikaloff-Fletcher et al., 2006], due to the additional circulation constraints provided by the tracer
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Figure 7. Air-sea fluxes, storage rates, and transports of anthropogenic CO2 (in PgC yr−1) from the OCIM for 13 ocean
regions for the year 2012. Air-sea fluxes (negative values are into the ocean) are in small italic numbers, storage rates are
in small bold numbers, and transports are in large bold numbers. Uncertainties (in parentheses) are only shown if they
are at least 0.01 PgC yr−1. Arrows indicate the direction of transport, and the size of the arrows scales approximately with
the magnitude of the transport. Budgets in each region may not completely balance due to rounding errors.

observations assimilated in the OCIM. Uncertainties have not been estimated for the GF-ECCO approach.
OCIM-estimated uncertainties on air-sea fluxes are minimal in the tropical and subtropical regions, while
uncertainties are largest in the Southern Ocean (Figure 6a).

Globally, Cant storage rates are highest in the midlatitudes, particularly the sub-Antarctic region of the Pacific
and Indian Oceans (Figure 6b). A secondary maximum in the storage rate is found in the midlatitude North
Atlantic Ocean, due to convergence of Cant flowing northward with Antarctic Intermediate Water and south-
ward with North Atlantic Deep Water. The latitudinal distribution of Cant storage rate in the OCIM is similar to
that derived from the GF-ECCO method [Khatiwala et al., 2013] although the OCIM estimates a slightly lower
storage rate in the Southern Ocean and higher storage rate in the equatorial oceans (Figure 6b).

Overall, there is a strong northward transport of Cant throughout the Southern Hemisphere (peaking at
about 0.55 PgG yr−1 near 45◦S), and northward Cant transport continues across the equator well into the
Northern Hemisphere (Figure 6c). The net global northward Cant transport is driven primarily by the Atlantic
Ocean, where transport is northward across all latitudes. Northward Cant transports in the South Atlantic in
the OCIM are larger than those predicted by the OIP, EnKF, or GF-ECCO approaches. In the Indo-Pacific basin,
Cant is primarily transported southward except south of about 30◦S (Figure 6c), in good agreement with the
GF-ECCO-predicted transport rates but substantially different from those predicted by the EnKF approach.

The large-scale contemporary oceanic Cant sink estimated from the OCIM is summarized in Figure 7. The
Southern Ocean (south of 35◦S) experiences the largest net air-sea flux of anthropogenic CO2, currently
taking up about 1.1 PgC yr−1 or about 40% of the global oceanic Cant uptake. The Antarctic region of the
Southern Ocean (south of 55◦S) stores only about 25% of the Cant that it absorbs from the atmosphere—the
remainder is transported northward into the sub-Antarctic zone, where it is either stored or is transported
farther northward into the tropical and subtropical Atlantic and Pacific Oceans (Figure 7). The North Pacific
Ocean (north of the equator) also takes up a substantial amount of CO2 on the order of 0.5 PgC yr−1, most of
which is stored locally but some of which is transported across the equator. The South Pacific Ocean experi-
ences a net convergence of Cant transported from the North Pacific and from the Southern Ocean, not only
contributing to substantial Cant storage in this region but also leading to a large transport of Cant into the
southern Indian Ocean through the Indonesian Throughflow (ITF) (Figure 7). A loop connecting the South-
ern Ocean, South Pacific, and South Indian Oceans can be identified in which Cant is taken up in the Southern
Ocean, transported northward into the South Pacific, then transported laterally through the ITF into the
South Indian, and ultimately transported southward into the Southern Ocean once more (Figure 7).
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Figure 8. The residual sink (RS; positive values indicate a flux of CO2
out of the atmosphere) of anthropogenic CO2 in the OCIM. Black lines
represent the annual RS which is derived from centered differencing of
the cumulative residual sink (equation (6)). The range of values at each
year includes error due to the range of oceanic Cant storage derived
from the 10 different versions of the OCIM and 10% error on cumulative
CO2 emissions [Andres et al., 2012]. The red line (with 1% uncertainty
shading) is the 5 year running mean of the annual RS. Also shown are
estimates of the terrestrial CO2 sink for the period 1992–1996 from
Jacobson et al. [2007] and Steinkamp and Gruber [2013]. Numbers in
red (at bottom) represent the average RS for each 20 year time interval
graded on the x axis (the number at the bottom right is for the interval
2000–2010).

4. Implications for the Terres-
trial Sink of Anthropogenic
CO2

A cumulative residual source or sink
(CRS) of anthropogenic CO2 can be
inferred from the difference between
cumulative anthropogenic CO2 emis-
sions (Cem

ant) and Cant accumulated in the
atmosphere (Catm

ant ) and in the ocean (Coce
ant )

CRS = Cem
ant(t) − Catm

ant (t) − Coce
ant (t). (6)

Here Cem
ant(t) is the cumulative amount of

anthropogenic CO2 emissions at time t
due to fossil fuel burning, cement pro-
duction, and gas flaring [Boden et al.,
2013], Catm

ant is the difference between
the amount of C in the atmosphere at
time t and that in year 1780, and Coce

ant (t)
is the amount of Cant stored in the ocean,
estimated from the OCIM.

The CRS of Cant calculated in this way
can be interpreted as representing a
cumulative terrestrial source or sink of

anthropogenic CO2, with some caveats. First, the CRS includes not only Cant stored in the terrestrial bio-
sphere but could also include Cant stored in inland waters, estuaries, coastal marine sediments, and Cant

transported laterally from land to the open ocean [Regnier et al., 2013]. Second, a portion of the CRSmay also
reflect changes in the fluxes of “natural” CO2, i.e., CO2 fluxes that are not driven by human activity, includ-
ing variability in the air-sea flux of natural CO2 that is not accounted for by the steady-state OCIM. Third, the
CRS inherits any interannual variability in the oceanic Cant sink which is not represented in the OCIM; how-
ever, the interannual variability in oceanic CO2 uptake is small compared to the interannual variability in the
terrestrial CO2 sink [Sarmiento et al., 2010].

The year-to-year change in the CRS, which is referred to here as the residual sink (RS), primarily reflects
changes in the terrestrial flux of CO2 (Figure 8). Interannual variability in the RS is very large, which reflects
short-term climate variability such as the effects of El Niño–Southern Oscillation and major volcanic erup-
tions [Sarmiento et al., 2010]. This interannual variability is effectively filtered out by applying a 5 year
running mean filter to the results (Figure 8, red curve). The RS is negative from the beginning of the indus-
trial era up to about 1940, which is consistent with a large net flux of CO2 from terrestrial ecosystems due
to deforestation and land use changes [Houghton, 2003]. From 1940 onward the RS is positive and gener-
ally increasing over time, due to various factors including afforestation and the fertilizing effects of CO2 and
anthropogenic nitrate emissions on the terrestrial biosphere [Canadell et al., 2007], while land use change
continues to constitute a net source of CO2 to the atmosphere [Houghton et al., 2012]. A large sink of C in
world’s forests (1.1±0.8 PgC yr−1) over the last several decades [Pan et al., 2011] may account for most of the
1.38±0.20 PgC yr−1 RS in the OCIM over that period.

The RS estimated from the OCIM generally agrees with the RS estimates from other modeling studies. For
the period 1960–1988, the RS estimated from the OCIM is 0.56±0.13 PgC yr−1, which is higher than the
RS estimated by Sarmiento et al. [2010], who calculated an RS of 0.27±0.27 for the same period. Since the
oceanic CO2 uptake in the OCIM and in the ocean models analyzed by Sarmiento et al. [2010] are nearly
identical for that period, the difference between the RS of the two estimates is attributed to differences
in the emission data used in both studies. Leaving out emissions from cement production and gas flar-
ing, and using only fossil fuel emissions as in Sarmiento et al. [2010], yields a RS of 0.37±0.12 for the period
1960–1988 in the OCIM, in much better agreement with the results of Sarmiento et al. [2010]. For the period
1989–2005, the OCIM RS is 1.24±0.20 PgC yr−1 (0.97±0.19 using only fossil fuel emissions), in agreement
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with the RS of 1.15±0.23 estimated by Sarmiento et al. [2010] for the same period. The OCIM RS for the
1990s is 1.16±0.19 PgC yr−1, which is also in agreement with other independent estimates of the terrestrial
CO2 sink. The joint ocean-atmosphere inversions of Jacobson et al. [2007] and Steinkamp and Gruber [2013]
estimated a terrestrial CO2 sink of 1.12±0.23 PgC yr−1 and 1.25±0.29 PgC yr−1, respectively, for the period
1992–1996. The contemporary RS in the OCIM is 1.59±0.24 PgC yr−1 over the period 2000–2010. As noted
by Regnier et al. [2013], approximately 0.5 PgC yr−1 of the contemporary terrestrial C sink is actually stored
in coastal and estuarine sediments, and perhaps, 0.1 PgC yr−1 is rerouted to the open ocean, leaving about
1.0 PgC yr−1 stored in the terrestrial biosphere.

5. Conclusions

This study presented a new estimate of the oceanic anthropogenic CO2 (Cant) sink, obtained by assimi-
lating multiple tracers (temperature, salinity, radiocarbon, and CFC-11) into an Ocean Circulation Inverse
Model (OCIM). The simultaneous application of both observational and dynamical constraints in the OCIM
was able to reduce uncertainties in the oceanic Cant sink when compared with other purely data-based or
model-based approaches. While the OCIM-estimated oceanic Cant sink shows improved accuracy and pre-
cision compared to previous estimates, significant sources of uncertainty remain, primarily due to potential
variability in the ocean circulation and the biological pump over the industrial era which is not accounted
for in the OCIM.

In particular, oceanographic observations indicate that the circulation of the Southern Ocean may have
undergone substantial changes in the last decade or two, presumably in response to the formation of the
Antarctic zone hole and associated changes in the Southern Hemisphere westerly winds [Waugh et al.,
2013]. Inversions of atmospheric data [Le Quéré et al., 2007] and OGCM simulations [e.g., Lovenduski et al.,
2008] suggest that such circulation changes may have weakened the Southern Ocean CO2 sink. A high pri-
ority should be put on developing data-based estimates of the oceanic Cant sink that address the issue of
ocean circulation variability more explicitly, focusing particularly on changes in the Southern Ocean, which
is the largest regional anthropogenic CO2 sink.

How the ocean’s biological carbon pump has responded to climate variability over the industrial era is an
open question. Some studies have suggested that increasing CO2 concentrations may have a fertilizing
effect on marine biota, leading to a stronger biological pump [e.g., Riebesell et al., 2007]. However, at the
same time, increased ocean acidification may impair the ability of calcifying organisms to create CaCO3

tests, leading to a weaker biological pump by the reduction of mineral ballast [Hofmann and Shellnhuber,
2009]. The net impact of all of these effects on the ocean’s biological pump is unclear at this time, and
whether there has been any significant effect on the oceanic Cant sink is not known. It will be important to
resolve these issues in order to develop more confident estimates of changes in the oceanic anthropogenic
CO2 sink.
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